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STABILITY OF THF: LAHIRAR BOuM1ARY LAYER OVER 
A DEFOBN4BLE DIAPH2AGH TYPE SUBFACE 

V. V. Skripachev 

rABSTRACTe 
surface, the phy.siea3. charac te r i s t ics  of which ape eonstant along 
the length, is examined, 

The s t a b i l i t y  of the Blasius flow over a diaphragm-type 

Attempts have been made t o  provide a theoret ical  explanation of the e f fec t  /52* - 
boundary deformation has on the posit ion of the point i n  the boundary layer  at 
which s t a b i l i t y  is l o s t ,  
experiments El9 21 i n  sheathing models with f lex ib le  coating% 
axaminred the s t a b i l i t y  of a plane l e i n a r  boundary Xayer over an e l a s t i c  surface 
611 the assumption that there is a l inea r  connection between pressure disturbance 
avld normal surface defomation, 

s t a b i l i t y  of a laminar boundary layer  over a diaphragm-type surface on the assuup- 

These attempts are associated with K r m e ~ ~ 3  successful 
A .  I. Korotkin [33 

Benjamin [SI and LandrnhX [53 investigated the 

t ion  that the physical charac te r i s t ics  of the surface depend on the wavelength of 
the disturbing flow, ' 

The s t a b i l i t y  of the Blasius flow over a diaphrapp-type surface, the physical 
charac te r i s t ics  of which a r e  constant along the length, w i l l  be examined i n  what 

follows, 

. We w i l l  take it tha t  when there are no disturbances the surface of the plate  

coincides with the half-plane x 2 0, y = o (Figure I), 
tain disturbances have taken place i n  the flow at tn predetermined rnornen-t, 

Let us suppose tha t -cer -  

L e t  us  
investigate the s t a b i l i t y  of the flow with respect t o  these disturbances. 

Figure 1 
* Hmbers in the margin indicate pagination i n , t h e  foreign t e x t .  



Let U, V (V < U) be the components of the velocity of the Blasius flow along 

the x an6 y axes, respectfvely, p be the pressure, M be the kiaemritic msduSus of 
viscosity,  and p be the f l u i d  density, 

the disturbmces,  u p 9  v B p  and the pressure d i s tu rbace ,  p g ,  are small i n  the 
sense that terns  that a r e  quadratic ~ 5 t h  respect to  the disturbances can be 
ignored. Let us introduce the strezra function, $ q 9  f o r  the disturbing flow 

We w i l l  t ake  it tha t  the ve loc i t ies  of 

i n  the form 
qf = cp (y) exp [ i  a(cc-ct)l 

-> 

the  while assuming tha t  the real par t  of equation (1) is tatken, 

cy, is a r e a l  magnitude, linked with the wavelength of the disturbing flow by the 

The tave number, 

-I- i c  The phase velocity c = cy is a complex magnitude, relationship CY = 

The si@ of the imaginary p a ~ t ,  ci9 tells whether the disturbance will increase 

( e .  > 01, or be damped ( c .  0). Dimensionless magnitudes abe used i n  equation 
(11, as w e l l  as in w h a t  follows, The velocity Ug at  the outer l i m i t  of the 

boundary layer  is taken as the velocity scale,  and the thickness of the boundary 

i 

3. 1 :  

layer 

.. < 

is taken as the length scale. 

The neutral  cume ci = 0, separating the region of r i s ing  disturbances fmn 
the region of damping disturbances, is of par t icu lar  in te res t ,  
nuxber for loss of s t a b i l i t y  is determined by the shape *of t h i s  c m e e  

aebtral s t a b i l i t y  curve is eonstwcted from the solution of the Orr-Somerfield /53 
equation for the amplitude 9 of the stream function for a disturbing flow 161 

The Reynolds 
The 

- 

1 (U - c )  (cp" - a?cp) - U"Cp = - ui R (p - 2a2cp" + a") (2) . 

where 

The boundary eoaditions f o r  equation (2) express the.eoncPitionzs for disturb- 
ance 
are i n  the fom [63 

damping a t  i n f i n i t y  a d  the adhesion conditions. The conditions at  i n f i n i t y  
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The adhesion conditions express the equality of the velocity of a e3urface 
element and a liquid particle adjacent to .the surface (Figure 1) 

Let us put 

Substituting the equality at (5) in (41, expinding the right sides of the 
latter in a Taylor series, and taking the smalbesk of the defomatioas, and the 
velocity V, into consideration, we obtain 

... 

It .&KlL be convenient, in subsequent ~~slrnp~.tati~~s, to introduce the nom'nnal, 

and.the tangential, Xo7 yielding of the flow with respect to the traveling 
wave. 
ratio of, the normal (tangential.) velocity to the pressure disturbance, 
pt = pl exp Cia, (x -* ct)I  , that is 

The riopmal (tangential) yielding is determined with sign correctness by the 

which can be written with first opder of infinitesfmals correctness as - 

The amplitude pg of the pressure disturbance can be found from the linearized 
A 

equations for the motion of a viscous fluid in projections 
respectively 
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The ident i ty  of equations (8) and (9.) follows ~ ~ Q I D  equation (21, 

11 9 
Introduced i n  similar fashion are the tangential ,  P12, and Z I O ~ E I ~ P ~  Y 

yieldings of a deformable surface with respect t o  the traveling wave 

and can be written with first order of infiriitesimals correctness i n  the form /54 - 

The equality 

yields  the boundary conditions on the deformable surface. 

The computations show t h a t  the tangential  yielding has l i t t l e  e f fec t  on the 
posit ion of the point at which s t a b i l i t y  is lost, and it can be taken as equal 
t o  zero, 

which is dependent '11 9 
L e t  us, i n  order to determine the normal yielding, 

on Ti,, consider the motion of a diaphragp element (Xgure 2 ) e  e 
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Figure 2 

Here w, is the mass of a unit of diaphragm area9 T, is the surface tension 
The occurping per unit width of the diaphragm, and k, is the stiffness factor. 

asterisks denote dimensional magnitudes, 

Let us find the S,/p, ratio from equation (121, with equation (5) taken into 
consideration, When this ratio is substituted in equation (10) we obtain 

where 

An approximate solution of equation (2) can be given in the form . 
(14 9 @ 4'498 ' 

In this equation I is the 81.nonviseous.ti solution, satisfying the equation 

(U,- c) (0" - a20) - u" 0 = 0 
(3.5 

and cp is the approximate "viscousi1 solution of equation ( 2 )  satisfying 3 
equation [SI 

, . . ,  . .  , 

Here Yc is the value of y for which U = c. ' 

The solutions'of 9 and cp satisfy the bomdary conditions at ( 3 ) .  The 3 
boundary conditions at (111, a d  the condition of nontriviality of the solution 
lead to the characteristic equation liPlking the magmitudes a,cIR with the para- 
meters of the defomble surface, 
the expression for the pressure amplitude pl, contaipted in (11) ikoring the 

Before writing this equation, Pet us simplify 
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smal1 magnitude terns, In  accordance with equations (8) anrd (141, we can write 

The first tern i n  the r ight  s ide of equation (17) can be igaored because - /55 
the  change i n  the nonviseous solution is slow, 

zero i n  the case of the B las ius  flow, as follows from equation (15) a f t e r  
d i f fe ren t ia t ion  with respect t o  y. 

the r igh t  s ide  of equation (17) 
equals CY 
cations i n  equation (171, l e t  us find cp 

integrat ion with respect to y 

This  te rn  is exactly equal t o  

The sua of the tk i rd  and fourth terns in 
i n  accordance with equations (6) a d  (101, 

, stnd i t  too can be ignored. In order t o  make fur ther  simplifi-  

( 0 )  from equation (16) by tern 
12%. 

3 

p1 (0) = U' (0)O (0) + c@' (0) 

An ident ica l  expression can also be obtained by the transfornation of 
equation (9) , "and it w i l l  be correct  t o  within the R g1/3 terns, 
c i ted  above confirm Landahl's asser t ion  f51 that a l inearized equation of motion 
i n  the projection on the  y axis  yields  a more accurate expression f o r  pressure 
disturbance than does a l inearized equation of motion i n  the projection on the 

x axis, 

me arguments 

Using the expression obtained f o r  p we can w i t e ' t h e  charac te r i s t ic  
1 9  

,- 

equation in the form 

{Yll [U' ( O P  (0) + a' (0}1 - i G a  (0)) IU' (0)cpS (0) + ccp/ (O)! = 
(20 1 " 

= --iacpo (0) [U' (O)@ (0) + CO' (O)] 

Let us s inp l i fy  equation (20). L e t  us introduce the following notations: 
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Here F(z) is a T i e t  jens function, tables sf which are contained i n  c61.) 
Equation (20) when expressed i n  terms of the notations i n  (23.1 w i l l ,  after 
mcomplicated transformations, appear i n  the f~~r l l  

U' (0) Yl1 P* (2 )  = u + iv + 
(22 1 

The function a, in .terns of kiniek we can express rfi -t- iv, is determined by 

the solution of equation (15). 
in terms of powers of CY , and l imit ing ourselves t o  the pr incipal  t e m ~ ,  we 

Presenting t h i s  solution i n  the fom of a series 
2 

Let us subs t i tu te  the value for YlP from equation (13) i n  equation (221, 
and l e t  us i s o l a t e  the rea l .and  the imaginary parts. We find t h a t  

where 

F * and Fi* are the real and the imaginary p a r t s  of the function F*(z) r 
respectively. 

Let us note that the l i nk  between the pressure and the deformation sometimes 

that is, i n  accordance with equation ( lo) ,  i t  is taken that 

Y,, = iacK,ei9 

and not considered as a concrete form of andeformable surface. 

in mind, it  is not d i f f i c u l t  t o  6ee that f o r  the model of a deformable surface 
With equation (13) 

adopted here 

that is, Kl a d  8 depend on the physical parameters of the disturbance wave and 
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on the parmeters  of the deformable surface. 

Based on the foregoing, the construction of the neutral  s t a b i l i t y  curve f o r  

fixed parameters of a deformable surface can be carried out in the foPPoteriPlg 
sequence. 
(21) f o r  a and e. 

equation at  (21). 

z = 3-21, Fi* = 0.58, and Fr* = 1.49, 

Find Fr* and Fi* i n  the tables for each Z. Solve equations (24) and 

Compute the corresponding R number by solving the corresponding 
Corresponding t o  the R number for loss of s t a b i l i t y  are 

Figure 3 shows the r e s u l t s  of the R number computations f o r  loss of s t ab i l i t y ,  

Curve 1 depicts the dependence of B = I?/% on the parameter f o r  the mass 

when Co = 0.75, kcu = 4.56*lOo5, d = O.lt kml = 1,8010 4 . The 5 x m .  = k*bml 
m 

number corresponds t o  the R number when d i f fe r ing  l i t t l e  from the R 

number f o r  a r ig id  surface. Curve 2 is for thedependenceof i3 on xW = ku/k;l 

when H1 = 0.4, co = 0.75, d = 0.1, ka = 7.4.10 It should be pointed out 

that the select ion of the values for co and d in. these computations w s  more 

-4 . 
m 

m 
or  less arbitrary.  

Submitted 13 Hay 1 s 9 .  
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